US009251084B2

a2 United States Patent 10) Patent No.: US 9,251,084 B2
Kiyota 45) Date of Patent: *Feb. 2, 2016
(54) ARITHMETIC PROCESSING APPARATUS, USPC oo, 7117141, 146, 117, 118, 119, 154,

AND CACHE MEMORY CONTROL DEVICE
AND CACHE MEMORY CONTROL METHOD

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(72) Inventor: Naohiro Kiyota, Yokohama (JP)

(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 156 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 13/873,539

(22) Filed: Apr. 30, 2013

(65) Prior Publication Data
US 2013/0346730 Al Dec. 26, 2013

(30) Foreign Application Priority Data
Jun. 26,2012 (JP) cevercivecececrecne 2012-143237

(51) Imt.ClL
GO6F 12/08
GO6F 9/38

(52) US.CL
CPC .......... GO6F 12/0875 (2013.01); GOGF 9/3834

(2013.01); GOGF 9/3861 (2013.01)

(58) Field of Classification Search

CPC ....cccee. GOG6F 12/0815; GOG6F 9/3834; GOGF
12/0862; GOGF 12/0811; GOGF 12/0828;

GOG6F 12/1027; GOGF 9/3859; GOGF 12/0808;
GOG6F 12/0817; GOGF 12/0842; GOGF 12/0875;
GOG6F 9/3861; GOG6F 9/3855; GOGF 12/084;

GOG6F 2212/6022; GOG6F 2212/621; GO6F

12/0844

(2006.01)
(2006.01)

711/E12.024, E12.026, E12.057
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,549,232 B2* 10/2013 Kiyota ......cccovvviinnn 711/141
2004/0168046 Al* 82004 Teruyama ... .. 712/228
2005/0210204 Al* 9/2005 Yamazaki ... .. 711/145
2006/0026594 Al* 2/2006 Yoshidaetal. . ... 718/100
2011/0161594 Al*  6/2011 Kiyota ....cooevevvrivinnn. 711/125

FOREIGN PATENT DOCUMENTS

JP 6-214875 8/1994
JP 2004-5710 1/2004
JP 4180569 11/2008
JP 2011-134205 7/2011

* cited by examiner

Primary Examiner — Zhuo Li
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

An arithmetic processing apparatus includes a plurality of
processors, each of the processors having an arithmetic unit
and a cache memory. The processor includes an instruction
port that holds a plurality of instructions accessing data of the
cache memory, a first determination unit that validates a first
flag when receiving an invalidation request for data in the
cache memory, a cache index of a target address and a way ID
of the received request match with a cache index of a desig-
nated address and a way ID of the load instruction, a second
determination unit that validates a second flag when target
data is transmitted due to a cache miss, and an instruction
re-execution determination unit that instructs re-execution of
an instruction subsequent to the load instruction when both
the first flag and the second flag are validated at the time of
completion of an instruction in the instruction port.

9 Claims, 18 Drawing Sheets

(_RIM DETERMINATION START )

st
| RECEIVE CACHE INVALIDATION REQUEST F

I

| SEARCH ALL FPs

$12

ARE THERE FPs OF valid=1,
status =completion

AND opcods =load system?

DO CACHE INDEX PARTS
OF ADDRESS OF CORRESPON
FP AND ADDRESS OF INVALIDATION
REQUEST MATCH WITH

EACH OTHER?

$13

S14

DING

SET RIM TO 1 FOR ALL ENTRIES FROM FP 5515
INDICATED BY FP-TOQ TO FPs OF

T S,
WHICH ADDRESSES MATCH WITH EACH OTHER

(CRIM DETERMINATION FINISH )




U.S. Patent Feb. 2, 2016 Sheet 1 of 18 US 9,251,084 B2

FIG. 1
RELATED ART

(1) (2) (3) (4)

load store store
NG GOOD NG
store

ORDEROF || load |ng
INSTRUCTIONS

load store load




U.S. Patent Feb. 2, 2016 Sheet 2 of 18 US 9,251,084 B2
FIG. 2
RELATED ART
100
/\/
INSTRUCTION CONTROL UNIT
\
load—A load—B data-B data-A
200
/\/
| PRIMARY
CACHE
Y cache Y cache CONTROL UNIT
miss hit
DATA REQUEST > DATA TRANSMISSION
o

TIME



U.S. Patent Feb. 2, 2016 Sheet 3 of 18 US 9,251,084 B2

FIG. 3A /\,100a ’,\,QOOa | /\/300
piow miss......, 212a
FP r~c1V8 : Y- DATAREQUEST
store~A-— 0 | store—A --------- *cache /[ A - DAT:ARESUESW?
CPU-a store~-B——{ 1 | store=B 4r=====---1 : B| - -
i [ )
T miss
hit
ep 22100 szb
load—B-+— 0 | load—B Je-====-1 .| cache /[ A | old
CPU_BlIoad—A e ; e DATAREQUEST
1 o i
data—-A (old) miss
Moo 2000 <=
FIG.3B  ,100a . 200s | 30
10 it 212a |
Fp o108 ¥ DATA TRANSHMISSION
store—A 0 | store-A cache /| A [new DATAfRANSMISSION
CPU=0) | ctore-B | [ 1] store—B B [new
’
hit
o210 2120 L paTION
load-B | [ 0] load-B cache /A - 4 REQUEST
CPU=B || oag-A 1| load-A B| -
(old)
00 2000 <=
FIG.3C  ,.100a . 200a 300
ep ~210a %128
store—A 0 cache /| A [new
CPU-a lstore_B 1 —now CATATRANSISS 0N
data—B(new) 210b 212b
IOad—B_FP ! /\/ /J
(new) 0 | load-B e Y I
CPU-B | load-A 11 load-A B [newie
(old) ""'ﬁ'r_"
[




US 9,251,084 B2

Sheet 4 of 18

Feb. 2, 2016

U.S. Patent

153N04y 153N03d
zo_ww__\,_wz,qw:&zo NOILVAITVANI

pm——————

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

=
mnm_‘w AN AYA

\

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

00y~ LINN DILINHLINY|

61z~ |+| v

/

~

| 41 |y [ssaippeepoodo] snjejs| pifea | 44

\

NOILO3S NOILYNINYS13d
9L ™ NOILNDIXI-TH NOILONHLSN]

llllllllllllllllllllllllllllllllllllllllllll

mzo_mm_s_wzéh ,E@ |
.................................................. LINT TOMINOD 3HOVO AYANODS |
L T0e

4002 2002 002
IR NG TORINGD THOvS Aot ,"
A [ |
NOLLNIRAL30 10— |
Ty Ssaippe M _
NOILD3S | wie” | m
N30y [~ Tsanoaw e | [ |
e ol |
Y q0l¢ 'B0LZ ‘01T |

| INN TOMINOD NOILONYLSNI|

400} €00} ‘001"



US 9,251,084 B2

Sheet 5 of 18

Feb. 2, 2016

U.S. Patent

ﬁ:z: Q_E_\,_Itm,qw

~
0¥ 4

-

AV
oyoeo

or (S
acic ecle cle

ugisenbai

Aypoud

| LINN TOMINOO FHOVD AV bhe

GL#1senbal

Sl

1 #1senbal

142

Z#1senbay

[4

Hn

| #1senbal

}

0#1senbal

0 [¢«—00.-dA

A

o /\/DSN B0LZ 0iC

1 11 \/\
q00¢ ©00¢ 00¢

c

ﬁ.:z: TOY1INOD zoﬁo:mhmz_u

4 n\/\
4001 001 001

Ol




U.S. Patent

Feb. 2, 2016

Sheet 6 of 18

FIG. 6

US 9,251,084 B2

valid

status

opcode

address

RIM

RIF




U.S. Patent Feb. 2, 2016 Sheet 7 of 18 US 9,251,084 B2

FIG. 7
(" RIM DETERMINATION START )
511
RECEIVE CACHE INVALIDATION REQUEST
; e
SEARCH ALL FPs

513

ARE THERE FPs OF valid=1,
status =completion,
AND opcode =load system?

S14

DO CACHE INDEX PARTS
OF ADDRESS OF CORRESPONDING
FP AND ADDRESS OF INVALIDATION
REQUEST MATCH WITH
EACH OTHER?

SETRIMTO 1 FOR ALL ENTRIES FROM FP 515

INDICATED BY FP-TOQ TO FPs OF
WHICH ADDRESSES MATCH WITH EACH OTHER

r

(' RIM DETERMINATION FINISH )




U.S. Patent Feb. 2, 2016 Sheet 8 of 18 US 9,251,084 B2

FIG. 8

( RIF DETERMINATION START )

!

TRANSMIT CACHE REGISTRATION DATA  |s521

‘ 522
SEARCH ALL FPs

523

NO

|S THERE FP OF valid=17

SETRIF TO 1 FOR ALL ENTRIES FROMFP |s524
INDICATED BY FP=TOQ TO VALID FP

(_RIF DETERMINATION FINISH )




U.S. Patent Feb. 2, 2016 Sheet 9 of 18

FIG. 9

INSTRUCTION RE-EXECUTION
REQUEST DETERMINATION START

S31
REQUEST PROCESS IN FP#n IS COMPLETED |©

532

NO

US 9,251,084 B2

RIM=1& RIF=1IN FP#n?

INSTRUCT INSTRUCTION RE-EXECUTION 5533

FROM NEXT INSTRUCTION TO
INSTRUCTION CONTROL UNIT

INSTRUCTION RE-EXECUTION
REQUEST DETERMINATION FINISH




US 9,251,084 B2

U.S. Patent Feb. 2, 2016 Sheet 10 of 18
FIG. 10A 1002 2002 | 300
2103 R{JIM R{’JIF: ..... miss_...... . ;JZa
/\/ 1
store-A e 0 | store-A +--4---{-4 cache - Bgﬁiigﬁi:%
CPU=21 | ctore-B- 1 store=B 4-=-1-=-1"= - >~
. :
miss
hit
P 210b FSM F,{JIF—;—“"]%%
load-B-+{ 0 | load—B <e=--}--=- | CACNE old
CPU-A l load-A——={ 1| load=A : - DATAREQUEST
de— 1 e ;
data-A{old) miss
Mioob 2000 <=
FIG. 10B ~100a 200 | 300
210a "M RIF i 2)2a |
FP r ¥~ DATA TRANSMISSION
store=A || 0 | store-A cache /| A new DATATRANSMIizlgN
CPU-a store-B 1| store-B new
it
|
- 2100 R}M Ff}F ,JZb INVALIDATION
load=B | | 0| load—B | v cache ~ Jo REQUEST
CPU-8 load-A 1| load-A |1 -
(old)
“00b 2000~ <~
FIG. 10C /\,100a /\/200a /\/300
RIM RIF 212a
store—A 0 cache new
CPU-a lstore_B 1 7 DATA TRANSWISSION
data-B(new) 210b R\ 212b
oad-B Trp—— ]~/ ~ ~RIF r
(new) 0| load-B mrbmy G2ONS/LA L = | oeMSSON
CPU-B|| Ioad-A 11 load-A | ¥ | b New =
(old) L
COMNAND RE-EXECUTION REQUEST  hit

*~ 1000

2006~




U.S. Patent Feb. 2, 2016 Sheet 11 of 18 US 9,251,084 B2

FIG. 11A /\,1003 ’,VZOOa ',\,300
RIM RIF 212a
Ep ~210a o r’
store-A 0 cache /| A [new
CPU-a lstore—B 1 B {new

210p RIMRIF,....10 ISS. o.nny 2120
load~B |pp . ~CTD £ r -0 DATA REQUEST_

(new) 0 i cache /A
CPU-B1| load-A | |7 : B [new
2 | load—A Je=dpeei-s
1" data-A(new)
M 000 2000
FIG. 11B /\,1003 /\,2003 /\/300
2104 IMRIF 2122
store=A |TTT0 ~ Lr cache /[ A newf/ DATA TRANSMISSION
CPU- lstore—-B 1 B [new
2106 RIMRIF hit 219b
CPU-8 lload—A 1 —rew
(new) 2 | load-A
1" data—A{new)

1006 2000 ™



U.S. Patent Feb. 2, 2016 Sheet 12 of 18 US 9,251,084 B2

FIG. 12
way-0  way-1 way=2 creeee-- way-N
0
!
i A B | C Z

INVALIDATION REQUEST



US 9,251,084 B2

Sheet 13 of 18

Feb. 2, 2016

U.S. Patent

M
\
A
NV
BYoRY 1INNTOHLINOD
—~ JHOVD
A L0€ A AMVANOD3S
00
v1va 1S3n03y v1va 1S3N03y
Y Y
VY vy

ayoed LINN TOYINOD EIREN LINN TOYLNOD

7 JHOVD ~7 JHOVD

qeie AV BZLC ASVINEA

vival  1S3no3d ) vival  1S3no3 )

y 4-v002 Y B-v00Z

(LINN TOMLINOD DILINHLIMY) | (LINN TOMINOD OLLAWHIIY) | o
LINN TOYINOD NOILONYLSNI 007 9001 LINN TOYLINOD NOILONYLSNI [~ 007 B00I
(9 -NdD)IH0D-NdD (0 -Nd2)3H02-NdD
01 “~01

NdD
_‘\./\
el 9Old




US 9,251,084 B2

Sheet 14 of 18

Feb. 2, 2016

U.S. Patent

e e e e s 2 1 1 4 B 8 o ko 1 o S 4 2 e e e e e e e

g7} 914 0L
|

chem @_>m>>tl_

Zhem

| Aem

e NOILJ38 ONID0D0 82
|8
| - ofemelep 5¢
| —H zfem elep -
" —H |kem ejep il pifem
m OAemelep « E:m\,w
s ‘ NOLLO3S ¥ el
L R En
_ D ! =+{E Pl . gpcado =
| b ey =l sploned mE_mm il mmg ol 77 17
0GP 0fem e{ZM I [€1:24]e0|piA(zhem [ [170]en [171]erl=—t v/ y
! <{[o1: /9] med 161/ i]ed|piea| 1Aem |«—&apcado apcodol<—g[] AL NOLLDISIA M NOILOSS
m NOILYNINYALIA (=[] O ed INFALSOray y w
W 11H FHIVO [=0M DileA NOLLOAS VL M §5300Y q NOILD3S
| " S e TO4INOD DOL
! pifem 07
E\om_u ONIJOIN Y
B/ N ALY
m 9ke NOLLOS NOILYNINY3L3a
| 153N0 NOLLNOIXT- T NOLLINYLSNI
) At et e e S Rt ettt T atatet dadet
[TNNJIEAALEY }~oop Y00 q 1IN TOYLNOD NOLLOMISNI |

Vvl Old

J
9001 "800 “ooT\_




US 9,251,084 B2

Sheet 15 of 18

Feb. 2, 2016

U.S. Patent

]
Yy

_F

pifem— 1[#8100[eleq [ : y]SSaippe [piEA

#0100 NOIO® |
NOLLYNIY3130 NOLLYIYAN] Y1 —— HOLIE VO SOW) ANOO:
I ! g 8¢ Y

| vem-| ][/ /41sseippe [erepieul]

[Pifem- 7 [eseq][L: Lylsseippe ojum]

NOILI3S 1S3N03 NOLLYAITYANI YL¥C

NOLLO3S NOISSISNWL YLYQ NOILYYLSIOR

(EpURpRERRY. VR

|pifem-| 7] #6100][/: /y]sseippe [ peal]

NOILO3S 1S3NDFY NOISSINSNYYL Y1Ya NOLLWHLSIOR

leea|[2 zy]ssaippe [eyum] ssaippe =

A

[43

e

NOILO3S

NOLLYNIWY3.30

AYM

INFNZOY 13

of

A

¢

NOLLO3S 35NOdS NOILYAVANI YLYQ |~ o

ErIyed Cregen|=s
NOLLO3S NOISIN) §53H00¢ )~

¢ |

Vil 914 WONA

a¥l "Old



U.S. Patent Feb. 2, 2016 Sheet 16 of 18

FIG. 15

( load PROCESSSTART )

S41

YES

PRESERVE WAY NUMBER IN FP

542

END

US 9,251,084 B2



U.S. Patent Feb. 2, 2016 Sheet 17 of 18

FIG. 16

( RIM DETERMINATION START )

!

US 9,251,084 B2

RECEIVE CACHE INVALIDATION REQUEST

951

\

SEARCH ALL FPs

5852

563

ARE THERE FPs OF valid=1,
status =completion,
AND opcode =load system?

554

DO CACHE INDEX PARTS
OF ADDRESS OF CORRESPONDING
FP AND ADDRESS OF INVALIDATION
REQUEST MATCH WITH
EACH OTHER?

555

DOES WAY NUMBER
HELD IN CORRESPONDING FP
MATCH WITH WAY NUMBER OF
INVALIDATION REQUEST?

SETRIMTO 1 FOR ALL ENTRIES FROM FP
INDICATED BY FP-TOQ TQ FPs OF
WHICH WAY NUMBERS MATCH WITH EACH OTHER

556

r

(' RIM DETERMINATION FINISH )




U.S. Patent Feb. 2, 2016 Sheet 18 of 18 US 9,251,084 B2

FIG. 17

(INVALIDATION PROCESS START)

'

SECONDARY CACHE UNIT RECEIVES DATA 561
TRANSMISSION REQUEST FROM PRIMARY CACHE UNIT

562

DOES ADDRESS
OF Valid DATA MATCH WITH
ADDRESS OF DATA TRANSMISSION
REQUEST?

DOES CPU#
OF CORRESPONDING DATA MISMATCH
WITH CPU# OF DATA TRANSMISSION
REQUEST SOURCE?

REQUEST CPU INDICATED BY CPU# OF CORRESPONDING |s 564
DATA TO PERFORM INVALIDATION PROCESS

'

INVALIDATE DATA OF CACHE INDEX AND way 565
INDICATED BY INVALIDATION PROCESS
REQUEST IN PRIMARY CACHE UNIT

Y

READ INVALIDATION TARGET DATA IN 560
PRIMARY CACHE UNIT AND TRANSMIT READ
DATA TO SECONDARY CACHE UNIT

'

TRANSMIT DATA TO PRIMARY CACHE UNIT 567
WHICH 1S DATA TRANSMISSION REQUEST SOURCE
FROM SECONDARY CACHE UNIT

-t
Y

(INVALIDATION PROCESS FINISH)




US 9,251,084 B2

1

ARITHMETIC PROCESSING APPARATUS,
AND CACHE MEMORY CONTROL DEVICE
AND CACHE MEMORY CONTROL METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2012-
143237, filed on Jun. 26, 2012, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiment discussed herein is related to an arith-
metic processing apparatus, a cache memory control device,
and a cache memory control method.

BACKGROUND

In a processor serving as an arithmetic processing appara-
tus, which is currently commonly used, an out-of-order pro-
cess is employed in order to maintain the consistency at a
degree higher than that in the related art to run an instruction.
The out-of-order process refers to a process of executing,
while reading of data for a preceding instruction is delayed
due to a cache miss or the like, reading of data for a subse-
quent instruction, and then executing reading of the data for
the preceding instruction.

However, if this process is performed, there may be a case
in which the latest data is read in the reading executed by the
subsequent instruction and old data is read in the reading
executed by the preceding instruction, and thus may result in
the violation of total store ordering (TSO).

Here, the TSO indicates that a reading result of data cor-
rectly reflects a data writing order and secures consistency of
an execution order. The TSO is one of memory ordering rules
which specifies the constraints in replacement of an order of
data to be actually written in a memory with respect to an
order of instructions accessing the memory. The TSO rule
includes the following three. A load instruction may not be
processed so as to bypass a preceding load instruction; a store
instruction may not be processed so as to bypass a preceding
load instruction and a preceding store instruction; and an
atomic load/store instruction may not be processed so as to
bypass a preceding load instruction and a preceding store
instruction.

That is to say, as illustrated in FIG. 1, a load instruction
(load) may be processed so as to bypass a preceding store
instruction (store) but in the other patterns it is inhibited from
bypassing an instruction. However, in a case where target data
of'a load instruction is included in target data of a preceding
store instruction, the corresponding load instruction loads the
data of the store instruction.

Here, a processor (a CPU or a CPU-CORE) which pro-
cesses memory access out of order enables a load instruction
to return data to an instruction control unit before a preceding
load instruction is executed. As illustrated in FIG. 2, in an
arithmetic processing apparatus including an instruction con-
trol unit 100, and a primary cache control unit 200 which
accesses a cache memory in response to a memory access
request from the instruction control unit 100, the subsequent
process is performed. For example, in a case where cache
miss occurs in relation to target data of a preceding load
instruction (load-A) and cache hit occurs in relation to target
data of a subsequent load instruction (load-B), the primary
cache control unit 200 returns the data of the subsequent load

20

40

45

2

instruction (load-B)to the instruction controlunit 100 so as to
bypass the preceding load instruction (load-A).

However, actual instruction execution is performed
according to an order of instructions. Therefore, when TSO
between a load instruction and a store instruction is kept, even
if load data is read out of order, it seems that TSO can be kept
in software of an arithmetic processing apparatus with a
single processor configuration. However, when another pro-
cess invalidates target data of a subsequent load instruction in
response to a store instruction in an arithmetic processing
apparatus with a multi-processor configuration, there are
cases where TSO violation between load instructions is found
in software. In other words, there are cases where read data of
the preceding load instruction become new data after execu-
tion of the store instruction regardless of read data of the
subsequent load instruction being old data before execution
of'the store instruction and thus bypassing inhibition between
load instructions of TSO is violated.

In order to avoid this, a subsequent load instruction may be
re-executed in a case where there is a possibility that TSO
may be violated. That is to say, when there is a subsequent
load instruction which bypasses a preceding load instruction
and returns data, the target data is invalidated such that
another processor uses target data of the subsequent load
instruction, and thus a processor of interest stores the target
data being invalidated. In addition, when the preceding load
instruction makes data read, the instruction control unit 100
may be notified that there is a possibility that TSO may be
violated, and instructions after the next instruction (the sub-
sequent load instruction) may be re-executed.

However, if whether or not there is a possibility of TSO
violation is determined based on whether or not there is an
invalidation request, there are cases where it is determined
that there is a possibility of TSO violation even though TSO
is not inherently violated. If this determination is performed,
an instruction re-execution process is unnecessarily per-
formed, which is thus a factor of considerably reducing a
performance.

Japanese Patent No. 4180569, Japanese Laid-open Patent
Publication Nos. 2011-134205 and 6-214875 are examples of
the related art.

SUMMARY

According to an aspect of the invention, an arithmetic
processing apparatus includes a plurality of processors, each
of the processors having an arithmetic unit and a cache
memory. The processor includes an instruction port that holds
a plurality of instructions accessing data of the cache
memory, a first determination unit that validates a first flag
when receiving an invalidation request for data in the cache
memory, a cache index of a target address and a way ID of the
received request match with a cache index of a designated
address and a way 1D of the load instruction, a second deter-
mination unit that validates a second flag when target data is
transmitted due to a cache miss, and an instruction re-execu-
tion determination unit that instructs re-execution of an
instruction subsequent to the load instruction when both the
first flag and the second flag are validated at the time of
completion of an instruction in the instruction port.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.



US 9,251,084 B2

3
BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a general TSO rule;

FIG. 2 is a diagram illustrating an example in which load
instructions bypass each other in a processor which performs
an out-of-order process;

FIGS. 3A to 3C are diagrams illustrating an example of the
TSO violation in a multi-processor configuration;

FIG. 4 is a block diagram illustrating an example of the
configuration of a primary cache control unit having a func-
tion of avoiding TSO violation;

FIG. 5 is a block diagram illustrating an example of the
configuration related to a fetch port in the primary cache
control unit;

FIG. 6 is a diagram illustrating an example of the format of
each entry in the fetch port in the primary cache control unit;

FIG. 7 is a method illustrating a determination operation
performed by an RIM determination section;

FIG. 8 is a method illustrating a determination operation
performed by an RIF determination section;

FIG. 9 is a method illustrating an operation example of an
instruction re-execution determination section;

FIGS. 10A to 10C are diagrams illustrating an example of
the TSO violation avoiding operation performed by the pri-
mary cache control unit in the multi-processor configuration;

FIGS.11A and 11B are diagrams illustrating an example of
the TSO violation avoiding operation performed by the pri-
mary cache control unit in the multi-processor configuration;

FIG. 12 is a diagram illustrating an example of the con-
figuration of an N-way set associative cache memory;

FIG. 13 is a block diagram illustrating an example of the
configuration of an arithmetic central processing apparatus;

FIGS. 14 A and 14B are diagrams illustrating an example of
the configuration of the primary cache control unit and the
secondary cache control unit;

FIG. 15 is a method illustrating a method of setting a way
1D;

FIG. 16 is a method illustrating an example of the RIM
determination process; and

FIG. 17 is a method illustrating a flow of an invalidation
process.

DESCRIPTION OF EMBODIMENT

FIGS. 3A to 3C are diagrams illustrating an example of the
case where TSO violation between load instructions is found
in software in an arithmetic processing apparatus with a
multi-processor configuration (multi-core configuration). In
the arithmetic processing apparatus illustrated in FIGS. 3A to
3C, aCPU-a.(a CPU core) and a CPU-f (a CPU core) respec-
tively include instruction control units 100a and 1005, and
primary cache control units 200a and 2005. In addition, the
CPU-p and the CPU- commonly use a secondary cache
controlunit 300 of a lower hierarchy. In FIGS. 3A to 3B, fetch
ports (FPs) 210a and 2105 are instruction ports which hold
instructions accessing data of a cache memory, and, in these
FPs, the instructions are respectively held in entries specified
by the FP numbers O and 1. Further, hereinafter, when the
instruction control units 100a and 10056 and the like are
referred to, in a case where the CPU-c side and the CPU-§3
side do not have to be differentiated, the letters a and b of the
end are omitted, and only the leading reference numeral
(“100” or the like) may be used.

In FIGS. 3A to 3C, in the processor CPU-q, store instruc-
tions store-A and store-B are issued in this order in relation to
data of regions (indexes) of a cache memory (cache) 212a. In
addition, in the processor CPU-p, load instructions load-A

10

20

25

30

35

40

45

50

55

60

65

4

and load-B are issued in this order in relation to data of
regions (indexes) of a cache memory (cache) 21264.

As illustrated in FIG. 3A, in the primary cache control unit
2004 of the CPU-q,, both the instructions store-A and store-B
undergo cache misses, and data is requested to the secondary
cache control unit 300. In addition, in the primary cache
control unit 20056 of the CPU-, the instruction load-B under-
goes a cache miss. The instruction load-A performs cache hit
and bypasses the instruction load-B such that target data,
data-A (old), is returned to the instruction control unit 1005
whilst target data of the instruction load-B might not be
returned to the instruction control unit 1005 due to the cache
miss. In relation to the data of the region B where the instruc-
tion load-B undergoes the cache miss, the data is requested to
the secondary cache control unit 300.

Next, as illustrated in FIG. 3B, an invalidation request for
the cache memory 2126 of the CPU-f is issued from the
secondary cache control unit 300 in response to the previous
data request regarding the instruction store-A from the
CPU-a to the secondary cache control unit 300. In other
words, in order to satisfy a desire for exclusively holding data
between CPUs, the data of the region A to be sent to the
CPU-a is invalidated in the CPU-J side and thus is not avail-
able. After the invalidation request, the two store instructions
store-A and store-B of the CPUs are processed in this order.

Next, as illustrated in FIG. 3C, the data of the region B
which has been stored is sent to the CPU-f from the CPU-c..
The instruction load-B is processed in the CPU-§, and
thereby data-B (new) which has been stored by the CPU-a is
returned to the instruction control unit 1005.

As a result, although the two store instructions store-A and
store-B are issued in this order in the CPU-q, the data-B (new)
after being stored is returned in response to the instruction
load-B and the data-A (old) before being stored is returned in
response to the instruction load-A in the CPU-f. That is to
say, an instruction process in the CPU-p consequently vio-
lates bypassing inhibition between load instructions of TSO.

In order to avoid this, a subsequent load instruction is
re-executed in a case where there is a possibility that TSO
may be violated. That is to say, when there is a subsequent
load instruction which bypasses a preceding load instruction
and returns data, in a case where target data is invalidated such
that another processor uses target data of the subsequent load
instruction, a processor of interest stores the fact. In addition,
when the preceding load instruction makes data read, the
instruction control unit 100 may be notified that there is a
possibility that TSO may be violated, and instructions after
the next instruction (the subsequent load instruction) may be
re-executed.

For example, in a case where the instruction load-A is
processed so as to bypass the instruction load-B and then data
of the region A is requested to be invalidated, a signal (flag)
indicating the fact is validated. Successively, if the signal
(flag) is valid when the instruction load-B is processed and the
data is returned, the instruction control unit 1005 is notified
that there is a possibility of TSO violation between the load
instructions. The instruction control unit 1005 reissues the
instruction load-A in response to the notification, and thus
data which is returned thereafter by the instruction load-A
reflects the instruction store-A in the CPU-q, thereby avoid-
ing TSO violation.

Hereinafter, first, a basic operation of a configuration for
avoiding TSO violation through instruction re-execution will
be described.

FIG. 4 is a block diagram illustrating an example of the
configuration of the primary cache control unit 200 having a
function of avoiding TSO violation. FIG. 5 is a block diagram



US 9,251,084 B2

5

illustrating an example of the configuration related to the
fetch port (FP) 210 in the primary cache control unit 200
illustrated in FIG. 4. FIG. 6 is a diagram illustrating an
example of the format of each entry in the FP 210 of the
primary cache control unit 200 illustrated in FIG. 4.

Requests for cache access from the instruction control unit
100 are temporarily held in the FP 210 of the primary cache
control unit 200. FIG. 5 illustrates an example of the configu-
ration related to this FP 210. The requests are respectively
allocated to the entries of the FP 210 according to an order on
a program and are stored in the entries, and, the respective
entries of the FP 210 are circularly used. For example, in a
case where the FP 210 has sixteen entries, requests from the
instruction control unit are allocated in order from FP#0, and
are allocated to FP#0 after FP#15. In addition, in some cases,
FP#n (where n=0 to 15) is referred to as an FP number by
specifying one entry in the FP 210.

The FP 210 is provided with a priority section 211 as
illustrated in FIG. 5. The priority section 211 adjusts a request
(request#0 to request#15) of which entry in the FP 210 is
processed. In order to guarantee the above-described TSO,
the priority section 211 guarantees that a subsequent store
instruction does not bypass a preceding load instruction in an
order of instructions to be processed, or a subsequent store
instruction does not bypass a preceding store instruction, and
enables a subsequent load instruction to bypass a preceding
load instruction. In addition, the priority section 211 selects
the entries (requesti#n) of the FP 210 one by one out of order,
that is, at random, and makes a process of the instruction
executed. Further, the respective entries of the FP 210 are
sequentially released in chronological order from the oldest
entry. Here, the oldest entry of the valid entries is indicated by
fetch-port-top-of-queue (FP-TOQ). In other words, an entry
of the FP 210 which is not indicated by the FP-TOQ is not
directly released even if'a process of an instruction in the entry
is completed. In addition, an entry which has been processed
is released in an old order from an entry indicated by the
FP-TOQ atatime point when a process of an instruction in the
entry indicated by the FP-TOQ is completed.

FIG. 6 illustrates a format of each entry, that is, content of
each entry. As illustrated in FIG. 6, each entry of the FP 210
holds “valid”, “status”, “opcode”, “address”, “RIM”, and
“RIF”. The “valid” is a flag indicating whether or not the entry
is valid. The “status” is a flag indicating whether or not a
process of the cache access request held in the entry is com-
pleted. The “opcode” indicates a type (load or store) of cache
access request held in the entry. The “address” indicates an
address of the cache access request held in the entry. The
“RIM” and “RIF” are flags used for TSO guarantee control.
The RIM flag is validated in a case where target data is ejected
from the cache memory 212 by an invalidation request
received after the target data is transmitted to an arithmetic
unit 400 by a load instruction held in a certain entry until the
entry is released. The validation of the RIM flag is performed
by a RIM determination section 214 described later. The RIM
flag is an example of the “first flag”. The RIF flag is validated
by a RIF determination section 215 described later in a case
where the target data of a load instruction is transmitted after
the load instruction held in a certain entry undergoes a cache
miss. The RIF flag is an example of the “second flag”.

With reference to FIG. 4, detailed configuration and opera-
tion of the primary cache control unit 200 having the FP 210
or the priority section 211 configured in this way will be
described. The primary cache control unit 200 illustrated in
FIG. 4 has a configuration for realizing an instruction re-

10

15

20

25

30

35

40

45

50

55

60

65

6

execution request in order to guarantee TSO, and, more spe-
cifically, has a function of avoiding TSO violation illustrated
in FIGS. 3A to 3C.

As illustrated in FIG. 4, the primary cache control unit 200
is connected to the instruction control unit 100 and the arith-
metic unit 400, and is also connected to the secondary cache
control unit 300. The primary cache control unit 200 includes
the cache memory (cache RAM) 212, an access adjustment
section 213, the RIM determination section 214, the RIF
determination section 215, and an instruction re-execution
determination section 216, in addition to the FP 210 or the
priority section 211 described with reference to FIG. 5. In
addition, for convenience, in FIG. 4, only a single entry of the
FP 210 including a plurality of entries is illustrated, and the
priority section 211 is not illustrated.

The priority section 211 (refer to FIG. 5) selects a request
(instruction) held in each entry of the FP 210 and accesses the
cache memory 212 in order to process the selected request. At
this time, the access adjustment section 213 adjusts access to
the cache memory 212 in relation to the request selected by
the priority section 211 and a data registration request or an
invalidation request received from the secondary cache con-
trol unit 300. When the request from the FP 210 acquires
priority through this adjustment in the access adjustment
section 213, access to the cache memory 212 is performed so
as to process the request. In a case where the request is a load
request, for example, the cache memory 212 is searched for
target data of the load request, and, if the target data is cache-
hit, the corresponding data is transmitted to the arithmetic
unit 400. On the other hand, if a cache miss occurs, a trans-
mission request of the corresponding data is issued to the
secondary cache control unit 300.

When a response of data transmission to the transmission
request of the corresponding data is received from the sec-
ondary cache control unit 300, the primary cache control unit
200 sends a registration request of the corresponding data
(data registration request) to the access adjustment section
213. In addition, when the registration request of the corre-
sponding data acquires priority through the adjustment in the
access adjustment section 213, the corresponding data is reg-
istered in the cache memory 212. Along therewith, informa-
tion related to the registration request of the corresponding
data from the secondary cache control unit 300 is sent to the
RIF determination section 215. The RIF determination sec-
tion 215 determines whether or not the RIF flag of the entry of
the FP 210 is validated according to a method (steps S21 to
S24) illustrated in FIG. 8 on the basis of the information
related to the registration request.

That is to say, when data to be registered in the cache
memory 212 is transmitted from the secondary cache control
unit 300 (step S21), the RIF determination section 215
searches all the entries of the FP 210 (step S22). In addition,
the RIF determination section 215 determines whether or not
there is an entry of “valid=1”, that is, a valid entry in the FP
210 (step S23). If there is a valid entry in the FP 210 (the YES
route), the RIF flag is set to “1” in all the entries of the FP 210
from an entry indicated by the FP-TOQ to the valid entry (step
S24). In other words, in a case where target data of a load
instruction is transmitted from the communication process-
ing unit 300 after the load instruction held in the entry under-
goes a cache miss, the RIF determination section 215 vali-
dates an RIF flag of a target entry. In addition, if there is no
valid entry in the FP 210 (the NO route in step S23), the RIF
determination section 215 finishes the RIF determination pro-
cess.

Referring to FIG. 4 again, when an invalidation request to
the cache memory 212 is received from the secondary cache



US 9,251,084 B2

7

control unit 300, the primary cache control unit 200 sends the
invalidation request to the access adjustment section 213. In
addition, when the invalidation request from the secondary
cache control unit 300 acquires priority through the adjust-
ment in the access adjustment section 213, corresponding
data of the cache memory 212 is invalidated. Along therewith,
information related to the invalidation request from the sec-
ondary cache control unit 300 is sent to the RIM determina-
tion section 214. The RIM determination section 214 deter-
mines whether or not the RIM flag of the entry of the FP 210
is validated according to a method (steps S11 to S15) illus-
trated in FIG. 7 on the basis of the information related to the
invalidation request.

In other words, when the invalidation request issued from
the secondary cache control unit 300 (step S11) for the cache
memory 212 is received, the RIM determination section 214
searches all the entries of the FP 210 (step S12). In addition,
the RIM determination section 214 determines whether or not
there is an entry of “valid=1", “status=completion”, and
“opcode=load system” inthe FP 210 (step S13). That is to say,
it is determined whether or not the invalidation request of
target data of the cache memory 212 is received after the
target data is transmitted from the cache memory 212 to the
arithmetic unit 400 in response to a load instruction held in the
FP 210 until the entry is released. If there is such an entry in
the FP 210, the flow proceeds to the YES route of step S13.
The RIM determination section 214 determines whether or
not a cache index part of an address of the corresponding
entry matches with a cache index part of a target address of the
invalidation request received from the secondary cache con-
trol unit 300 (step S14). If both the addresses match with each
other (the YES route of S14), the RIM determination section
214 sets the RIM flag to “1” for all the entries from an entry
indicated by the FP-TOQ to the valid entry (step S15). In
other words, there are cases where target data is ejected from
the cache memory 212 by an invalidation request after the
target data is transmitted to the arithmetic unit 400 by a load
instruction held in a certain entry of the FP 210 until the entry
is released. In these cases, the RIM determination section 214
validates the RIM flag of the corresponding entry. Further, if
there is no target entry in the FP 210 (the NO route of step S13
or the NO route of step S14), the RIM determination section
214 finishes the RIM determination process.

In addition, when a process of an instruction in each entry
of'the FP 210 is completed, the instruction re-execution deter-
mination section 216 refers to the RIM flag and the RIF flag
of'the entry and determines whether or not the instruction in
the corresponding entry is re-executed according to a method
(steps S31 to S33) illustrated in FIG. 9. In other words, when
a process of a request in a certain entry (FP#n) of the FP 210
is completed (step S31), the instruction re-execution determi-
nation section 216 determines whether or not both the RIM
flag and the RIF flag in the entry of FP#n are validated (step
S32). That is to say, it is determined whether or not “RIM=1"
and “RIF=1" (step S32). If both of them are validated (the
YES route), the instruction re-execution determination sec-
tion 216 issues an instruction re-execution request to the
instruction control unit 100 in order to instruct instruction
re-execution from a next instruction of the instruction corre-
sponding to the entry. In addition, if it is determined that the
determination in step S32 is negative (NO), the instruction
re-execution determination section 216 finishes the determi-
nation process.

Next, with reference to FIGS. 10A to 10C, and FIGS. 11A
and 11B, a description will be made of an operation of the
primary cache control unit 200 for avoiding TSO violation
illustrated in FIGS. 3A to 3C, that is, an operation of the

10

15

20

25

30

35

40

45

50

55

60

65

8

instruction re-execution request for guaranteeing TSO. Here,
FIGS. 10A to 10C and FIGS. 11A and 11B are diagrams
illustrating an example of the TSO violation avoiding opera-
tion performed by the primary cache control unit 200 illus-
trated in FIG. 4 in a multi-processor configuration. In addi-
tion, in FIGS. 10A to 10C and FIGS. 11A and 11C as well, a
store instruction and a load instruction are issued in the same
manner as in the case illustrated in FIGS. 3A to 3C. In other
words, in the processor CPU-q, store instructions store-A and
store-B are issued in this order in relation to data of the
regions of the cache memory 212q. In addition, in the pro-
cessor CPU-f, load instructions load-A and load-B are issued
in this order in relation to data of the regions of the cache
memory 2124.

As illustrated in FIG. 10A, in the CPU-f, when the load
instructions are processed in order of the instructions load-B
and load-A, in a case of FP-TOQ=0, the instruction load-B is
set in the entry of FP#0, and the instruction load-A is set in the
entry of FP#1. At this time, it is assumed that the instruction
load-B undergoes a cache miss and thus the secondary cache
control unit 300 is requested to transmit data of the region B.
On the other hand, in a case where the instruction load-A
performs a cache hit, the instruction load-A bypasses the
instruction load-B, and thereby data data-A (old) is transmit-
ted from the cache memory 2124 to the arithmetic unit 400
(the instruction control unit 1005) so as to complete a process
of the instruction load-A. In addition, as illustrated in FIG.
10A, in the CPU-a, when the store instructions are processed
in order of the instructions store-A and store-B, the instruc-
tion store-A is set in the entry of FP#0, and the instruction
store-B is set in the entry of FP#1. It is assumed that both the
instructions store-A and store-B undergo cache misses and
thus the secondary cache control unit 300 is requested to
transmit data of the regions A and B.

At this time, since the data (data-A (old)) corresponding to
the instruction store-A is present in the CPU-f, as illustrated
in FIG. 10B, an invalidation request is issued to the primary
cache control unit 2006 of the CPU-p from the secondary
cache control unit 300. In other words, in order to satisfy a
desire for exclusively holding data between the CPUs, the
data of the region A to be sent to the CPU-a. is invalidated in
the CPU-P side and thus is not available. In addition, as
illustrated in FI1G. 10B, data corresponding to the instructions
store-A and store-B is transmitted to the primary cache con-
trol unit 2004 of the CPU-c. and is registered in the cache
memory 212a, and then the store instructions store-A and
store-B are executed. Thereby, the regions A and B of the
cache memory 212a are updated (data-A (new) and data-B
(new)).

Further, at this time, as illustrated in FIG. 10B, in the
primary cache control unit 2005 of the CPU-f, the RIM flag
of'the entry of the FP 21054 is validated by the function of the
RIM determination section 214. That is to say, the RIM deter-
mination section 214 determines that an address of the cache
index part of the load instruction of FP#1 of which a process
has already been completed matches with an address of the
cache index part of the invalidation process request. Based on
this determination result, the RIM flag which indicates a
possibility that the data (data-A (old)) may be updated by
another CPU (here, the CPU-q) is validated.

Since the data of the region B requested by the instruction
load-B in the CPU-§ is held by the CPU-q, as illustrated in
FIG. 10C, the data (data-B (new)) updated by the instruction
store-B is transmitted from the CPU-a to the CPU-f. In
addition, this data (data-B (new)) is stored in the region B of
the cache memory 2125 in the CPU-f. At this time, in the
primary cache control unit 2005 of the CPU-f3, the RIF flag is



US 9,251,084 B2

9

validated by the function of the RIF determination section
215. In other words, the RIF determination section 215 vali-
dates the RIF flags in all the valid entries (all the entries of
valid=1) of the FP 2105, that is, flags indicating a possibility
that data may be transmitted from another CPU (here, the
CPU-a). In addition, the RIF flag indicates whether or not
data is transmitted from another CPU and thus does not have
to be information related to an entry. For example, a flag
region may be provided independently from an entry of the
FP, and the RIF flag may be set in the flag region. Alterna-
tively, the RIF flag may be set in only an entry of the FP-TOQ
which is next released.

Asillustrated in FIG. 10C, the data (data-B (new)) stored in
the region B of the cache memory 2125 of the CPU-§ is
transmitted to the arithmetic unit 400 (the instruction control
unit 1005) in response to the instruction load-B. At this time,
when the process of the instruction load-B is completed, the
instruction re-execution determination section 216 checks
whether or not both the RIM flag and the RIF flag of FP#0 are
in a valid state. In the example illustrated in FIG. 10C, these
flags are in a valid state, and thus the instruction re-execution
determination section 216 determines that there is a possibil-
ity of TSO violation and requests the instruction control unit
100 to re-execute an instruction.

As illustrated in FIG. 11A, in the CPU-p, the instruction
load-A is re-executed by the instruction control unit 100 in
response to the instruction re-execution request. That is to
say, the instruction load-A of FP#1 which is a next instruction
of'the instruction load-B of FP#0 is executed again. However,
in FIG. 11A, the instruction load-A first undergoes a cache
miss, and the secondary cache control unit 300 is requested to
transmit data to the region A. At this time, since the data
corresponding to the instruction load-A is present in the CPU-
a, as illustrated in FIG. 11B, the data (data-A (new)) updated
by the instruction store-A is transmitted from the CPU-a to
the CPU-p. This transmitted data (data-A (new)) is stored in
the region A ofthe cache memory 2125 inthe CPU-f. Further,
the updated data (data-A (new)) is transmitted to the arith-
metic unit 400 (the instruction control unit 1005). Through
the above operation, TSO violation described with reference
to FIGS. 3A to 3C is solved.

However, there are cases where an excessive instruction
re-execution request is issued depending on circumstances
described below and thus a process performance is reduced in
the primary cache control unit 200 having the function of
avoiding the TSO violation described with reference to FIGS.
4 to 11B. That is to say, a plurality of N data items are
registered in the same cache index in the N-way set associa-
tive cache. At this time, when an invalidation request is gen-
erated inrelation to data of a certain way of a certain index due
to instruction execution of another processor, there are cases
where it is determined that there is a possibility of TSO
violation although TSO is not inherently violated. If this
determination is performed, an instruction re-execution pro-
cess is unnecessarily performed, which is thus a factor of
considerable performance reduction.

FIG. 12 is a diagram illustrating an example of the con-
figuration of an N-way set associative cache memory. In FIG.
12, the rows respectively correspond to indexes O to i, and the
columns respectively correspond to N ways, way0 to wayN-
1. N tags are provided so as to correspond to a single index,
and thereby N data items can be stored.

As illustrated in the method of FIG. 7, as a condition for
validating the RIM flag, a determination regarding whether
an address of the cache index part held by an FP entry of
which a load process is completed matches with an address of
the cache index part of the invalidation process request is

10

15

20

25

30

35

40

45

50

55

60

10

performed. Here, in a cache employing the N-way set asso-
ciative method, there are N data items which are registered in
the cache with the same cache index as target data of the
invalidation process request (for example, B of FIG. 12).
Therefore, in the address matching determination of only the
index part, even in a case of an invalidation process request of
data which is registered in the same cache index as data of
which a load process is completed but is registered in a
different way, the RIM flag is validated. As a result, excessive
instruction re-execution is requested, and thus this causes
performance to be reduced.

For example, in FIGS. 10A to 10C, it is assumed that the
regions A and B ofthe cache memories 212a and 2125 respec-
tively have a single index, and two ways, way0 and way1, are
provided for each index. In addition, it is assumed that target
data of the load instruction load-A is data of the first way,
way0, of the index A. Further, it is assumed that an invalida-
tion request received by the CPU-§ in FIG. 10B requests
invalidation of data of the second way, way1, of the index A.
In this case, since an address of the cache index part of FP#1
in which a process of the instruction load-A is completed
matches with an address of the cache index part of the invali-
dation request, both the RIM flags of FP#0 and FP#1 are set to
be valid when the invalidation request is received. In other
words, the RIM flag is set to be valid although the data of the
instruction load-A is not a target of the invalidation request.
Thereafter, when a process of the instruction load-B is com-
pleted in FIG. 10C, since both the RIM flag and the RIF flag
of FP#0 are in a valid state, it is determined that there is a
possibility of TSO violation, and thus the instruction control
unit 100 is requested to re-execute an instruction.

In the N-way set associative method, the larger the number
of ways, the more the cases where the RIM flag is set by an
inherently unrelated invalidation request. In other words, the
larger the number of ways, the more the frequency in which
an instruction is unnecessarily re-executed, and this causes a
performance to be considerably reduced.

Hereinafter, in the N-way associative method, a descrip-
tion will be made of an arithmetic processing apparatus which
decreases a frequency of occurrence of redundant instruction
re-execution processes.

FIG. 13 is a block diagram illustrating an example of the
configuration of an arithmetic processing apparatus (a CPU
1) employing a primary cache control unit 200A of this
embodiment. In addition, in FIG. 13, the same reference
numerals as the reference numerals described above indicate
the same or substantially the same parts, and thus description
thereof will be omitted. Further, in the subsequent description
as well, the letter a is added to each reference numeral in order
to specify a constituent element of the CPU-q,, and the letter
b is added to each reference numeral in order to specify a
constituent element of the CPU-f. In a case where the CPU-a.
and the CPU-f do not have to be specified, the reference
numerals are used without adding the letters a and b.

As illustrated in FIG. 13, the CPU 1 employing the primary
cache control unit 200A of this embodiment uses a multi-
processor configuration. That is to say, the CPU 1 includes
CPU-COREs 10 (the CPU-a. and the CPU-B) which are two
processors, and the two CPU-COREs 10 commonly use the
secondary cache control unit 300 of a lower hierarchy. In
addition, each CPU-CORE 10 processes memory access out
of order, and includes an instruction control unit 100, an
arithmetic control unit 400 which is an arithmetic unit, and
the primary cache control unit 200A. In addition, the CPU 1
(the secondary cache control unit 300) is connected to a
system control bus 2 and is thus connected to a memory and
the like so as to communicate therewith. Further, each pri-



US 9,251,084 B2

11

mary cache control unit 200A includes a primary cache 212,
and the secondary cache control unit 300 includes a second-
ary cache 301.

FIGS. 14 A and 14B are diagrams illustrating an example of
the configuration of the primary cache control unit 200A and
the secondary cache control unit 300. In FIGS. 14A and 14B,
the same constituent elements as in other drawings or corre-
sponding constituent elements are referred to by the same or
corresponding reference numerals, and description thereof
will be omitted. In addition, in the cache control units of
FIGS. 14A and 14B, it is assumed that a primary cache
volume is 32 KB (four ways), a line size is 128 B, a page size
is 8 KB, and a memory space is 256 TB. A bit number of each
address illustrated in FIGS. 14A and 14B corresponds to this
size. In addition, in FIGS. 14A and 14B, a logical address is
indicated by va, and a physical address is indicated by pa.

In FIGS. 14A and 14B, the boundary between each func-
tional block and other functional blocks indicated by the
respective boxes basically indicates a functional boundary,
and does not correspond to separation between physical posi-
tions, separation between electrical signals, control logical
separation, or the like. Each functional block may be a single
hardware module which is physically separated from other
blocks to some degree, or may indicate a single function of
hardware modules which are physically integrated with other
blocks.

The primary cache control unit 200A of FIGS. 14A and
14B includes a fetch port section 20, an RIF determination
section 21, an RIM determination section 22, an access
adjustment section 23, a tag section 24, a data section 25, a
cache hit determination section 26, an encoding circuit 27, a
decoding circuit 28, and an address conversion section 29.
The primary cache control unit 200A further includes a
replacement way determination section 30, a data invalida-
tion response section 31, a registration data transmission
request section 32, and logical circuits 50 to 52. In addition,
the secondary cache control unit 300 of FIGS. 14A and 14B
includes a registration data transmission section 35, a data
invalidation request section 36, a data invalidation determi-
nation section 37, and a secondary cache data section 38.

A cache access request from the instruction control unit
100 is temporarily held in the fetch port section 20 of the
primary cache control unit 200A. A function and an operation
of the fetch port section 20 are the same as those of the
above-described FP 210. The fetch port section 20 holds a
plurality of instructions accessing data of the cache memory,
and the plurality of instructions are executed out of order and
are released in order. Specifically, the access adjustment sec-
tion 23 adjusts a request of which entry in the fetch port
section 20 is processed. In order to guarantee the above-
described TSO, the access adjustment section 23 guarantees
that a subsequent store instruction does not bypass a preced-
ing load instruction in an order of instructions to be pro-
cessed, or a subsequent store instruction does not bypass a
preceding store instruction, and enables a subsequent load
instruction to bypass a preceding load instruction. In addition,
the access adjustment section 23 selects the entries
(request#in) of the fetch port section 20 one by one out of
order, that is, at random, and makes a process of the instruc-
tion executed. Specifically, the access adjustment section 23
receives an index part va[12:7] corresponding from the sev-
enth bit to the twelfth bit of the logical address va[63:0] with
the 64-bit width and the opcode which are stored in the fetch
port section 20, from the fetch port section 20. The access
adjustment section 23 supplies the index part va[12:7] and the
opcode of the selected execution target instruction to the tag

30

40

45

12

section 24 and the data section 25 so as to execute a corre-
sponding load instruction or store instruction.

In addition, the access adjustment section 23 adjusts access
to the cache memory (the tag section 24 and the data section
25) in relation to the instruction of the fetch port section 20, a
data registration request or an invalidation request received
from the secondary cache control unit 300, and the like. When
a certain instruction or request acquires priority through the
adjustment in the access adjustment section 23, a process
corresponding to the instruction or the request is executed for
the cache memory.

The respective entries of the fetch port section 20 are
sequentially released in order from the oldest entry. Here, the
oldest entry of the valid entries is indicated by fetch-port-top-
of-queue (FP-TOQ). In other words, an entry of the FP 210
which is not indicated by the FP-TOQ is not directly released
even if a process of an instruction in the entry is completed. In
addition, an entry which has been processed is released in an
older order from an entry indicated by the FP-TOQ at a time
point when a process of an instruction in the entry indicated
by the FP-TOQ is completed.

As a format of each entry of the fetch port section 20, that
is, content of each entry, “wayid” which is a way ID is added
in addition to the content illustrated in FIG. 6. The meaning of
“valid”, “status”, “opcode”, “address”, “RIM”, and “RIF” is
the same as described above. However, validation of the RIM
flag is executed by the RIM determination section 22. As
described later, the validation process performed by the RIM
determination section 22 is illustrated in FIG. 16 and is a little
different from the process performed by the above-described
RIM determination section 214. In addition, validation of the
RIF flag is executed by the RIF determination section 21. The
validation process performed by the RIF determination sec-
tion 21 may be the same process performed by the above-
described RIF determination section 215 and may be per-
formed according to the method illustrated in FIG. 8. Further,
as described above, the instruction re-execution determina-
tion section 216 may determine whether or not an instruction
of a corresponding entry is executed again according to the
method illustrated in FIG. 9.

The way ID “wayid” is data indicating a way 1D (a way
number) of a way in which data corresponding to an instruc-
tion of a corresponding entry is stored. Since a four-way set
associative method is assumed in the circuit illustrated in
FIGS. 14A and 14B, the way ID may have, for example, a
2-bit width for expressing four ways. Four ways from way0 to
way3 may be respectively specified using values “007, “01”,
“10” and “11” of the way ID.

FIG. 15 is a method illustrating a method of setting a way
ID. When a load instruction held in the fetch port section 20
performs a cache hit through a process of the method, a way
1D is registered in the fetch port section 20 in relation to the
load instruction which has performed the cache hit.

Specifically, in step S41, it is determined whether or not a
tag matches in a process of the load instruction held in the
fetch port section 20. Specifically, the index part va[12:7] of
the designated address va[63:0] (an address at which load
target data is stored) of the load instruction which is a process
target is supplied to the tag section 24 via the access adjust-
ment section 23. The tag section 24 supplies the respective
tags (pa_wO0[47:13]) of four ways corresponding to the sup-
plied index part va[12:7] to the cache hit determination sec-
tion 26. In addition, the upper part va[63:13] of the index part
va[12:7] of the designated address va[63:0] of the load
instruction which is a process target is supplied to the address
conversion section 29. The address conversion section 29
converts the supplied logical address into a physical address,



US 9,251,084 B2

13

and a portion thereof pa[47:13] is supplied to the cache hit
determination section 26. The cache hit determination section
26 compares the respective tags of the four ways supplied
from the tag section 24 with the physical address pa[47:13]
supplied from the address conversion section 29 so as to
determine matching or mismatching. The cache hit determi-
nation section 26 outputs hit signals hit_way0 to hit_way3
indicating matching or mismatching in the respective four
ways. In the hit signals hit_wayO0 to hit_way3, the signal
corresponding to the way in which the matching is deter-
mined becomes “1”, and the signal corresponding to the way
in which the mismatching is determined becomes “0”.

If'the tag matches in step S41 (that is, if the load instruction
performs a cache hit), a way ID (a way number) of the way in
which the matching is determined is registered in the fetch
port section 20 in step S42. Specifically, the encoding circuit
27 receives the high signals hit_wayO to hit_way3 output
from the cache hit determination section 26 as input signals,
and encodes the input signals, thereby outputting a code (for
example, a 2-bit code) indicating the hit way number. This
code is stored in the fetch port section 20 as a way ID.

Referring to FIGS. 14A and 14B again, an operation of the
primary cache control unit 200A will be further described.
Although the tag hit when the load instruction is executed has
been described above in the above description, the data sec-
tion 25 outputs data items data_wayO to data_way3 of four
ways corresponding to the index va[12:7] supplied from the
access adjustment section 23 when the load instruction is
executed. The data items are supplied to the logical circuit 51.
Thelogical circuit 51 selects data of the way corresponding to
“1” among the hit signals hit_wayO0 to hit_way3 output by the
cache hit determination section 26 so as to be supplied to the
arithmetic unit 400. That is to say, the data to be loaded by the
load instruction is supplied to the arithmetic unit 400. In
addition, when a store instruction is executed as well, the hit
signals hit_wayO to hit_way3 are output from the cache hit
determination section 26.

In a case where there is no signal of “1” among the hit
signals hit_way0 to hit_way3 output from the cache hit deter-
mination section 26, that is, in a case of a cache miss, an
output of the logical circuit 50 becomes 1, and the registration
data transmission request section 32 is activated. The output
of the logical circuit 50 is also supplied to the replacement
way determination section 30, and thereby a process of eject-
ing replacement target data from the data section 25 is per-
formed. The registration data transmission request section 32
transmits an instruction “read” indicating reading, a physical
address “address [47:7]”, a core number (a number for speci-
fying which core), and a way ID of a way which registers data
in the primary cache, as a registration data transmission
request.

In the secondary cache control unit 300, data of the regis-
tration data transmission request transmitted by the registra-
tion data transmission request section 32 is stored in the
secondary cache data section 38 and is also supplied to the
data invalidation determination section 37. When the data of
the registration data transmission request is supplied, the data
invalidation determination section 37 searches for an entry of
the secondary cache data section 38 which has an address
matching with an address of the corresponding data. If there
is an entry of which an address matches, the data invalidation
determination section 37 notifies the data invalidation request
section 36 so as to transmit an invalidation request to a core
indicated by a core number of the entry. The data invalidation
request section 36 transmits invalidation request data includ-
ing “invalidate” indicating the invalidation request, an

10

15

20

25

30

35

40

45

50

55

60

65

14

address “address [47:7]” of the invalidation target, and a way
ID of a way of the invalidation target, to the corresponding
core.

In the primary cache control unit 200A of the core which
has received the invalidation request data, the RIM determi-
nation section 22 performs an RIM determination process.
This RIM determination process will be described later. In
addition, in the primary cache control unit 200A of the core
which has received the invalidation request data, the access
adjustment section 23 further invalidates data of the corre-
sponding way of the corresponding index on the basis of the
index part of the address and the way ID of the received
invalidation request. Further, at this time, the data items
data_way0 to data_way3 of the respective ways of the corre-
sponding index are output from the data section 25. Further-
more, the decoding circuit 28 encodes the received way 1D so
as to generate signals way0 to way3 in which only the way
indicated by the way ID is “1” and the other ways are “0”. The
logical circuit 52 selects data which is an invalidation target
from the data items data_wayO to data_way3 output from the
data section 25 on the basis of the signals way0 to way3, and
supplies the selected data to the data invalidation response
section 31. The data invalidation response section 31 trans-
mits an instruction “write” indicating writing, a physical
address “address [47:7]”, and the data which is requested to
be invalidated, as a data invalidation response.

Inthe secondary cache control unit 300, the data of the data
invalidation response transmitted by the data invalidation
response section 31 is stored in the secondary cache data
section 38. In response to the fact that an instruction part of
the data of the data invalidation response is “write”, the reg-
istration data transmission section 35 transmits the registra-
tion data to a core which previously makes the registration
data transmission request. Since the data of the registration
data transmission request which is previously sent is stored in
the secondary cache data section 38, a core number included
in the data may be used to specify a core which has made the
registration data transmission request. The registration data
transmitted by the registration data transmission section 35
includes an instruction “write” indicating a writing, a physi-
cal address “address [47:7]”, data which is returned in
response to the data invalidation (registered data), and a way
ID of a data registration destination.

In the primary cache control unit 200A of the core which
has received the registration data, the RIF determination sec-
tion 21 performs the RIF determination process illustrated in
FIG. 8. In addition, in the primary cache control unit 200A of
the core, which has received the registration data, the access
adjustment section 23 further registers the data in the corre-
sponding way of the corresponding index on the basis of the
index part of the address and the way ID of the received
registration data. In other words, the tag part of the address
“address [47:7]” in the registration data is stored in the cor-
responding way of the corresponding index of the tag section
24. Further, the registration target data is stored in the corre-
sponding way of the corresponding index of the data section
25.

FIG. 16 is a method illustrating an example of the RIM
determination process. The RIM determination section 22
validates the RIM flag according to this method. First, the
RIM determination section 22 receives an invalidation
request of data of the cache memory in a state in which a load
instruction held in the fetch port section 20 is completed and
is not released. When the invalidation request is received, the
RIM determination section 22 validates the RIM flag in a case
where a cache index of a target address and a way 1D of the



US 9,251,084 B2

15

received invalidation request match with a cache index of a
designated address and a way ID of the load instruction.

Specifically, when the invalidation request to the cache
memory is received from the secondary cache control unit
300 (step S51), the RIM determination section 22 searches all
the entries of the fetch port section 20 (step S52). In addition,
the RIM determination section 22 determines whether or not
there is an entry of “valid=1", “status=completion”, and
“opcode=load system” in the fetch port section 20 (step S53).
That is to say, it is determined whether or not the invalidation
request of target data of the cache memory is received after
the target data is transmitted from the cache memory to the
arithmetic unit 400 in response to a load instruction held in the
fetch port section 20 until the entry is released. If there is such
an entry in the fetch port section 20, the flow proceeds to the
YES route of step S53. The RIM determination section 22
determines whether or not a cache index part of an address of
the corresponding entry matches with a cache index part of'a
target address of the invalidation request received from the
secondary cache control unit 300 (step S54). If both the
addresses match with each other (the YES route of S54), the
RIM determination section 22 determines whether or not a
way ID (a way number) of the corresponding entry of the
fetch port section 20 matches with a way ID (a way number)
of'the received invalidation request (step S55). I[f both the way
1Ds (the way numbers) match with each other (the YES route
of step S55), the RIM determination section 22 sets the RIM
flag to “1” for all the entries from an entry indicated by the
FP-TOQ to the corresponding entry (step S56). In other
words, there are cases where target data is ejected from the
cache memory by an invalidation request after the target data
is transmitted to the arithmetic unit 400 by a load instruction
held in a certain entry of the fetch port section 20 until the
entry is released. In these cases, the RIM determination sec-
tion 22 validates the RIM flag of the corresponding entry.
Further, if there is no target entry in the fetch port section 20
(the NO routes of steps S53, S54 and S55), the RIM determi-
nation section 22 finishes the RIM determination process.

In addition, a target address of the invalidation request is a
physical address and is issued by the instruction control unit
100, and a designated address of a load instruction held in the
fetch port section 20 is a logical address. However, an index
part which is a lower bit of the address is the same regardless
of a physical address or a logical address. Therefore, there is
no problem in comparing the index parts as they are without
address conversion of an address between a target address of
the invalidation request and a designated address of the load
instruction held in the fetch port section 20. Similarly, there is
no problem in selecting an index of the tag section 24 or the
data section 25 on the basis of the index part as it is of the
target address of the invalidation request without address
conversion.

However, when matching in an upper address of the index
is intended to be detected in order to reduce the frequency of
occurrence of redundant instruction re-execution processes,
since a logical address is different from a physical address in
an address of the upper part, comparison may not be per-
formed without conversion. When an invalidation process
request is received, logical addresses of all the valid entries
held in the fetch port section 20 are converted into physical
addresses one by one by the address conversion section 29, so
as to determine whether or not the converted physical address
matches with a physical address indicated by the invalidation
process request. However, in this configuration, it takes time
to read all the valid entries of the fetch port section 20 and,
further, a performance is reduced due to pipeline occupation
for performing address conversion. Moreover, a circuit scale

35

40

45

16

increases since a bit width (six bits in this embodiment) of an
index is not only compared but 35 bits of the physical address
pal[47:13] are also compared. A physical address may be held
in the fetch port section 20 in order to avoid this problem;
however, the size of the fetch port section 20 increases in this
method. In this embodiment, since a way ID has two bits, if
the number of entries of the fetch port section 20 is set to
sixteen, 32 bits have to be used to detect matching. On the
other hand, in a case where a physical address is registered in
an entry, since the physical address is formed by 35 bits, if the
number of entries of the fetch port section 20 is set to sixteen,
560 bits have to be used to detect matching.

In light of the above-described problems, in this embodi-
ment, attention is paid to a way ID, and RIM determination is
performed by detecting matching of a cache index part and a
way ID. By the use of the way ID in this way, in the primary
cache where a logical address and a physical address are
mixed, it is possible to efficiently perform the RIM determi-
nation even without converting a target address of an invali-
dation request from a physical address to a logical address.

FIG. 17 is a method illustrating a flow of the invalidation
process. According to the flow of the invalidation process, for
example, the invalidation request illustrated in FIG. 1013 is
issued, and a process associated therewith is performed.
Hereinafter, with reference to FIG. 17, an operation of the
invalidation process performed by the circuit of FIGS. 14A
and 14B will be described.

In step S61, the secondary cache unit 300 receives a data
transmission request from the registration data transmission
request section 32 of the primary cache control unit 200A. In
step S62, the data invalidation determination section 37 deter-
mines whether or not an address of valid data (an entry indi-
cating “valid=1") stored in the secondary cache data section
38 matches with an address of the received data transmission
request. If the addresses do not match with each other (in a
case of negative determination (NO)), the invalidation pro-
cess finishes.

If the addresses match with each other (in a case of affir-
mative determination (YES)) in step S62, it is determined in
step S63 whether or not a CPU number (a core number “core
#7) of the corresponding data in which the addresses match
with each other does not mismatch with a CPU number (a
core number “core #”) of the data transmission request. This
determination is performed by the data invalidation determi-
nation section 37. In addition, the CPU number of the data
stored in the secondary cache data section 38 indicates that
the corresponding data is registered in the primary cache
control unit 200A of the CPU core indicated by the CPU
number. If the CPU numbers do not mismatch with each other
(in a case of negative determination (NO)), the invalidation
process finishes.

If the CPU numbers mismatch with each other in step S63
(in a case of affirmative determination (YES)), in step S64,
the data invalidation request section 36 transmits an invalida-
tion process request to the CPU core indicated by the CPU
number (core number) of the corresponding data in which the
addresses match with each other. In step S65, in the primary
cache control unit 200A which receives the invalidation pro-
cess request, data in which a cache index of the address and a
way ID of the invalidation process request match is invali-
dated. In step S66, the data which is an invalidation target is
read from the data section 25 of the primary cache control unit
200A, and the read data is transmitted to the secondary cache
control unit 300 via the data invalidation response section 31.
In step S67, the secondary cache control unit 300 which



US 9,251,084 B2

17

receives the transmitted data sends the received data to the
primary cache control unit 200A which is a data transmission
request source.

Although the arithmetic processing apparatus which
reduces the frequency of occurrence of redundant instruction
re-execution processes in the N-way set associative method
has been described based on the embodiment, the invention is
not limited to the embodiment and may be variously modified
within the scope disclosed in the claims. For example, the
number of ways, the width of an address, a form of each data
item, details of information included in each data item, a
detailed configuration or operation for realizing a desired
function, and the like are not limited to the embodiment, and
may be changed depending on the specification when being
mounted within the scope disclosed in the claims.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although the embodiment of the
present invention has been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What is claimed is:

1. An arithmetic processing apparatus comprising:

a plurality of processors in which each of the plurality of
processors has an arithmetic unit and a cache memory; at
least one of the plurality of processors further including:

an instruction port that holds a plurality of instructions
accessing data of the cache memory, the plurality of
instructions being executed out of order and being
released in order;

a first determination unit that receives an invalidation
request for data in the cache memory in a state in which
a load instruction held in the instruction port is com-
pleted and is not released, and validates a first flag when
a cache index of a target address and a way ID of the
received invalidation request match with a cache index
of'a designated address and a way ID of the load instruc-
tion;

a second determination unit that validates a second flag

when target data is transmitted due to a cache miss after
a load instruction held in the instruction port undergoes
the cache miss; and
instruction re-execution determination unit that
instructs re-execution of an instruction subsequent to the
load instruction held in the instruction port when both
the first flag and the second flag are validated at the time
of completion of an instruction held in the instruction
port.

2. The arithmetic processing apparatus according to claim

1, wherein the target address of the invalidation request is a

physical address, the designated address of the load instruc-

tion held in the instruction port is a logical address, and the
first determination unit performs determination without con-

verting the target address of the invalidation request from a

physical address to a logical address.

3. The arithmetic processing apparatus according to claim

1, wherein, when a load instruction held in the instruction port

an

10

15

20

25

35

40

45

50

55

60

18

performs a cache hit, a way ID is registered in the instruction
port in relation to the load instruction which has performed
the cache hit.
4. The arithmetic processing apparatus according to claim
1, wherein the first flag and the second flag are held for each
instruction held in the instruction port.
5. A cache memory control device including a cache
memory and an instruction port that holds a plurality of
instructions accessing data of the cache memory, the plurality
of instructions being executed out of order and being released
in order, and controlling the cache memory, the cache
memory control device comprising:
a first determination unit that receives an invalidation
request for data in the cache memory in a state in which
a load instruction held in the instruction port is com-
pleted and is not released, and validates a first flag when
a cache index of a target address and a way 1D of the
received invalidation request match with a cache index
of a designated address and a way ID of the load instruc-
tion;
a second determination unit that validates a second flag
when target data is transmitted due to a cache miss after
a load instruction held in the instruction port undergoes
the cache miss; and
instruction re-execution determination unit that
instructs re-execution of an instruction subsequent to the
load instruction held in the instruction port when both
the first flag and the second flag are validated at the time
of completion of an instruction held in the instruction
port.
6. The cache memory control device according to claim 5,
wherein the target address of the invalidation request is a
physical address, the designated address of the load instruc-
tion held in the instruction port is a logical address, and the
first determination unit performs determination without con-
verting the target address of the invalidation request from a
physical address to a logical address.
7. The cache memory control device according to claim 5,
wherein, when a load instruction held in the instruction port
performs a cache hit, a way ID is registered in the instruction
port in relation to the load instruction which has performed
the cache hit.
8. The cache memory control device according to claim 5,
wherein the first flag and the second flag are held in an entry
of the instruction port.
9. A cache memory control method comprising:
receiving an invalidation request for data in a cache
memory in a state in which a load instruction held in an
instruction port in which a plurality of instructions
accessing data of the cache memory are held and the
plurality of instructions are executed out of order and are
released in order is completed and is not released, and
validating a first flag when a cache index of a target
address and a way ID ofthe received invalidation request
match with a cache index of a designated address and a
way ID of the load instruction;
validating a second flag when target data is transmitted due
to a cache miss after a load instruction held in the
instruction port undergoes the cache miss; and

instructing re-execution of an instruction subsequent to the
load instruction held in the instruction port when both
the first flag and the second flag are validated at the time
of completion of an instruction held in the instruction
port.

an



